Page 1 sur 1
Domaine de définition
Posté : sam. 14 déc. 2013 18:17
par Robyn
Bonsoir , j'aurai besoin de votre aide
1) Précisez le domaine de définition de : g(x) = \(\frac{x+3}{x-4}\) + \(\frac{1}{x}\) ?
Je pense qu'il faut faire une inéquation
Re: Domaine de définition
Posté : sam. 14 déc. 2013 18:21
par SoS-Math(9)
Bonjour Robyn,
Ta fonction g est définie si le dénominateur de tes fractions ne sont pas nuls ...
Donc ici, on veut \(x-4\neq 0\) et \(x\neq 0\)
Donc l'ensemble de définition de g sera ... je te laisse finir.
SoSMath.
Re: Domaine de définition
Posté : sam. 14 déc. 2013 18:23
par Robyn
[-4 ; + infini [ ?
Re: Domaine de définition
Posté : sam. 14 déc. 2013 18:30
par SoS-Math(9)
Non Robyn !
Cela donne \(x \neq 4\) et \(x \neq 0\) sachant que x est un réel.
Donc l'ensemble de définition est "tous les nombres sauf 0 et 4" qui s'écrit sous forme d'intervalle : ..... à toi de le faire.
SoSMath.
Re: Domaine de définition
Posté : sam. 14 déc. 2013 18:35
par Robyn
R \ {0;4} ???
Re: Domaine de définition
Posté : sam. 14 déc. 2013 18:41
par SoS-Math(9)
Oui Robyn !
On peut aussi écrire : \(]-\infty;0] \bigcup ]0;4[ \bigcup ]4;+\infty[\).
SoSMath.
Re: Domaine de définition
Posté : sam. 14 déc. 2013 18:43
par Robyn
Merci de votre aide