Page 1 sur 2

Exercice sur les équations de droite

Posté : mer. 8 mai 2013 19:03
par Marina
Bonsoir j'ai un DM à faire pour ces vacances sur le theme des équations de droite mais le problème c'est que je bloque sur quelque exercice

1) Soit d d'équations y=3x+1.
Déterminer l'équation de la droite d' qui est parallèle à d qui passe par le point A (5;-2)
2) Un commerçant a vendu des poulets et des lapinns : au total, il a vendu 50 têtes et 136 pâtes.
Calculer le nombre de poulets et le nombre de lapins.
Je pense qu'il faut que je résous un système d'équations
3) (on est dans un système orthonormal)
Soit D1 , D2 et D3 le sdroites d'équations :
d1 : y=2x-2; d2 : y=-1/2x +1/2 ; d3 : x=-1
1) Déterminer les coordonnées de A,B et C, points d'intersection de ces droites prises deux à deux.
2) Montrer que le triangle est rectantgle

Voila merci d'avance pour votre aide

Re: Exercice sur les équations de droite

Posté : mer. 8 mai 2013 19:17
par SoS-Math(11)
Bonsoir Marina.

Pour la question 1, pense que deux droites sont parallèles si et seulement si elles ont le même coefficient, ici 3.
L'équation de la droite commence donc par y = 3x + p, il faut que tu trouves p pour que le point (5 ; -2) soit sur cette droite.

Pour la question 2 tu dois effectivement faire un système.

Pour la question 3, fais un graphique, (d3 est verticale).
Puis résous l'équation \(2x+1 = \frac{-x+1}{2}\) puis déduis-en l'ordonnée du point d'intersection des droites d1 et d2.
Pour les autres points d'intersection tu sais déjà que x = - 1 il ne te reste qu'a calculer les ordonnées des points d'intersection.

Ensuite calcule des carrés des longueursdes côtés du triangle : formule \(AB^2=(x_B-x_A)^2+(y_B-y_A)^2\) ; puis applique la réciproque du théorème de Pythagore.

Bon courage

Re: Exercice sur les équations de droite

Posté : mer. 8 mai 2013 19:59
par Marina
Bonsoir, Je tiens a vous remercier pour votre réponde rapide et efficace

Pour la question 1 j'ai calculer le point p à partir du A :
y = 3x + p
-2 = 3 x 5 + p
-2 = 15 + p
p = 2 + 15
p = 17
Donc l'équation de d' est y = 3x + 17

Pour la question 2 : D'accord mais on ne meux donne pas le total de poulets + de lapins je ne sais vraiment pas comment faire :(

Pour la question 3 : J'ai trouvé x= -9/2 donc l'ordonnée sera -8 ?
Mais je vous avoue que je ne comprend pas trop votre équation et comment calculer les coordonées de A, B et C en fonctions des droite d'équations

Merci pour votre aide :)

Re: Exercice sur les équations de droite

Posté : mer. 8 mai 2013 20:14
par SoS-Math(11)
Attention,
Ton calcul de p commence bien mais tu as fait une erreur de signe à la fin.

Appelle p le nombre de poulets et l le nombre de lapins.
Chaque bête n'a qu'une tête tu as donc l + p = nombre de têtes.
Les poulets ont 2 pattes et les lapins 4 donc le nombre de pattes est égal à \(2\times p + 4 \times l\).
Déduis-en le système et conclus.

Il y a une erreur dans mon précédent message l'équation ne correspond pas à d1, tu dois en réalité résoudre : \(2x-2=\frac{-1}{2}x+\frac{1}{2}\),
ce qui revient à \(2x-2=\frac{-x+1}{2}\).

Bonne continuation

Re: Exercice sur les équations de droite

Posté : mer. 8 mai 2013 21:04
par Marina
Désoler de vous répondre aussi tard mais j'ai eu un problèmede calcul pour la question 2
Bref je me réctifie pour la question 1 :
-2 = 15 + p
p = -2 + 15
p = 13

Pour la question 2 j'ai d'abord commencer par ce système d'équation :
p + l = 50
2p + 4l = 130
Pour la calculer j'ai multiplier par 2 la premiere ligne
Mais le probleme c'est que le résultat n'est pas tout a fait correcte : pour le nombre de lapin j'ai trouvé 55 et pour le nombre de poulet j'ai trouver -5

J'ai donc modifier ma solution j'ai fait
l + p = 50
4l + 2p = 130
Mais le probleme c'est que le résultat n'est toujours pas correcte : pour le nombre de lapin j'ai trouvé 43 et pour le nombre de poulet j'ai trouver 7

pour la question 3 : x = 5/2

Re: Exercice sur les équations de droite

Posté : mer. 8 mai 2013 22:01
par SoS-Math(11)
Bonsoir Marina,

Tu dois revoir ta méthode : si -2 = p + 15 passes à la ligne suivante en enlevant 15 de chaque côté ce qui donne -2 - 15 = p + 15 - 15, soit -2 - 15 = p ; corrige ta solution.

Je suis d'accord avec toi sauf que dans l'énoncé on donne 136 pattes. Tu as donc p + l = 50 et 2p + 4l = 136.
Tu multiplies par 2 la première équation, ce qui te donne : 2p + 2l = 100
Maintenant tu soustrais les deux égalités il va te rester 2l à gauche et un nombre à droite, tu n'as plus qu'à diviser par 2 pour trouver l.

Pour résoudre \(2x-2=\frac{-x+1}{2}\) je pense que tu as commencé par multiplier par 2 de chaque côté pour supprimer le dénominateur puis tu as mis x à gauche avec le signe + ce qui t'a donné 5x et 4 à droite avec le signe + ce qui t'as bien donné 5. Ensuite tu dois diviser par 5 et non pas par 2.

Corrige tes erreurs, et cela devrait être juste ensuite, ne vas pas trop vite.

Bon courage

Re: Exercice sur les équations de droite

Posté : mer. 8 mai 2013 22:58
par Marina
Ah Ouiiiiii !
Donc je reprend : -2 = p+15
-2 - 15 = p + 15 - 15
-2 - 15 = p
p = -17
Pour la 2)
Le resultat final est donc de 18 lapins et de 32 poulets

Pour la 3)

Je n'ai pas exctement fait sa je vous montres ( je me suis réctifier en me reprenant mais je pense que c'est faux)

2x - 2 = - x + 1/2 (le tout)
2x -2 + 2 = - x + 1/2 (le tout) +2
2x + x = x - x + 1/2 (le tout) +2
2x + x = 1/2 + 2
2x + x = 5/2
2 / 2x + x = 5/2 /2
x + x = 5/4
2x = 5/4
2 / 2x = 5/4 / 2
x= 5/8

J'ai obtenu 5/2 car au lieu de diviser 2x je les soustrais .

Merci énormenment pour votre aide professeur merci de m'aider à mieux comprendre et a corriger mes fautes
1000 merci :D

Re: Exercice sur les équations de droite

Posté : jeu. 9 mai 2013 07:03
par SoS-Math(11)
Bonjour Marina,

Tout est Ok pour les deux premières questions.

Pour la troisième ta méthode ne convient pas car il faut tenir compte des priorités des opérations : multiplications et divisions en premier c'est pourquoi il faut commencer par multiplier tout par 2 ce qui te donne \(2\times(2x-2)=\frac{-x+1}{2}\times2\) soit \(4x-4 = - x + 1\), je te laisse terminer.

Bonne continuation.

Re: Exercice sur les équations de droite

Posté : jeu. 9 mai 2013 12:36
par Marina
Je ne sais vraiment pas comment faire j'ai beau a passer des heure et des heure je trouve toujours pas la solution !
Petite remarque je divise toutjours par 2 car x+x = 2x donc pour enlever le 2 je divise 5/4 par 2

Re: Exercice sur les équations de droite

Posté : jeu. 9 mai 2013 16:08
par SoS-Math(11)
Rebonjour,

Tu ne suis pas mes explications, tu ne peux avoir \(2x\) car tu ajoutes \(4x\) et \(x\).

Relis bien mon avant-dernier message.

Bon courage

Re: Exercice sur les équations de droite

Posté : jeu. 9 mai 2013 17:37
par Marina
Bonjour professeur,

Oui en effet j'ai oublier d'additionner donc au final sa donne
4x - 4 = - x + 1
4x = -x + 4 + 1
4x + x = 5
5x = 5
x = 5/5 = 1 .

Donc l'ordonnée du point d'intersection des droites d1 et d2 est 1.
Mais comment je dois placer mes droites ? je doit calculer les coordonées des droites d ?
et comment je dois faire pour calculer les coordonées de A,B et C ?
Je vous avou que je suis un peu perdu la

Re: Exercice sur les équations de droite

Posté : jeu. 9 mai 2013 17:58
par SoS-Math(11)
Ok, mais c'est l'abscisse que tu as (x = 1) calcule maintenant y et tu auras A(1 ; y).

Pour B et C tu sais que x = -1, donc calcule y pour d& ce qui te donne B(-1, ...) et fais de même pour dé et tu aurs C(-1, ...) puis reprends mon premier message pour calculer les longueurs et appliquer Pythagore.

Bon courage, tu avances.

Re: Exercice sur les équations de droite

Posté : jeu. 9 mai 2013 18:13
par Marina
D'accord mais comment je fais pour calculer y ?
Par exemple pour A je doit calculer y avec l'équation de la droite d1 ?
C'est a dire que je doit faire
y = 2 x 1 - 2
y = 0
Donc A ( 1 ; 0 ) ?
Ainsi de suite ?

Re: Exercice sur les équations de droite

Posté : jeu. 9 mai 2013 21:29
par Marina
Vous avez bien reçu ma réponses ?

Re: Exercice sur les équations de droite

Posté : ven. 10 mai 2013 06:14
par SoS-Math(11)
Bonjour,

Tout à fait A(1, 0) , tu peux vérifier avec l'équation de d2.
Ensuite on te donne l'équation de d3 : x = -1 donc B(-1, y) pour calcule y avec l'équation de d1 fais de même pour C avec -1 et l'équation de d2.

Bon courage, tu es presque au bout