Page 1 sur 1

fonctions

Posté : sam. 16 mai 2009 17:49
par Invité
Bonjour,
J'ai un dm de maths a faire et il y a un moment ou je bloque.
Voici l'énoncé :
Un site internet propose a ses clients de telecharger des titres de musique.
-Tarif simple : 0.40€ par titre telecharger
-Abonnement : un abonnement de 5€ et chaque titre telecharger facturer a seulement 0.25€
-Forfait : un forfait de 10€ donnant droit a 50 titres; chaque titre supplementaire est facturé 1€.
On note x le nombre de titres telechargés par un client durant un mois.
je bloque au 3)b : On note h la fonction qui permet de calculer le prix a payer avec l'option Forfait.
Démontrer que h(x)=x-40, lorsque x est supérieur ou égale a 50.
et au 5) : Représenter graphiquement les fonctions f(tarif simple : f(x)=0.40x), g(abonnement : g(x)=0.25x+5), h(forfait : h(x)=10 ou h(x)=x-40) dans un meme repère orthogonal d'unités :
- 1 cm pour 10 titres telechargés en abcisses;
- 1 cm pour un prix a payerde 5€ en ordonnées.
Je n'ai pas comprix quels mesures(valeurs) des fonctions doit-on mettre.
et la 6) : Utiliser ce graphique pour determiner, selon le nombre de titres telechargés, le tarif le plus avantageux pour le client.
Merci d'avance. Antoine

Re: fonctions

Posté : sam. 16 mai 2009 18:37
par SoS-Math(1)
Bonjour Antoine,
Pour le forfait, si x est le nombre de titres téléchargés supérieur ou égal à 50 , et h(x) est le prix à payer, alors on a: \(h(x)=10+(x-50)~\times~1\).
Pour représenter graphiquement les trois fonctions, on a en abscisse le nombre de titres téléchargés et en ordonnée le prix à payer.
La première fonction est une fonction linéaire et la deuxième est une fonction affine.
Tu dois savoir que les représentations graphiques de ces fonctions sont des droites.
Pour la troisième fonction, c'est un peu plus délicat puisque pour x compris entre 0 et 50, h(x)=10.
Pour x supérieur ou égal à 50, h(x)=x-40 et c'est une fonction affine.
Bon courage.

Re: fonctions

Posté : sam. 16 mai 2009 19:28
par Invité
Merci beaucoup,
J'ai enfin fini mon dm
ça ma beaucoup aider sinon, j'été rester bloquer à l'exercice 3)b.

Antoine

Re: fonctions

Posté : sam. 16 mai 2009 19:40
par SoS-Math(1)
Bonjour Antoine,
Tu peux aussi te rendre sur le site "GeoGebra" : http://www.geogebra.org/cms/index.php?lang=fr
et démarrer ce logiciel directement en ligne.
Tu peux construire facilement pour vérifier ce que tu as fait les représentations graphiques des deux premières fonctions en saisissant en bas dans la barre de saisie : f(x)=0.4*x et g(x)=0.25*x+5
Bon courage.

Re: fonctions

Posté : mer. 20 avr. 2011 14:34
par emeline
J'ai le méme dm et je suis bloqué pour le graphique j'ai grandement besoin de votre aide merci d'avance

Re: fonctions

Posté : mer. 20 avr. 2011 14:43
par emeline
Je suis dans le méme probleme que antoine et je n'arive pas du tt aux question 5 et 6 mer ci d'avance pour votre aide

Re: fonctions

Posté : mer. 20 avr. 2011 15:04
par SoS-Math(1)
Bonjour Emeline,

La représentation graphique d'une fonction affine est une droite.
Il faut dont trouver deux points de la droite en choisisssant deux nombres de morceaux à télécharger.
Relis bien les messages précédents: on y trouve de précieuses informations.

A bientôt.

Re: fonctions

Posté : mer. 20 avr. 2011 16:05
par emeline
Merci j'ai réussi pour les deux premieres mais pour h(x) je n'y arrive pas du tout :(

Re: fonctions

Posté : mer. 20 avr. 2011 16:27
par SoS-Math(1)
Bonjour Emeline,

La fonction h est définie par \(h(x)=10\) si \(x\leq~50\) et par \(h(x)=x-40\) si \(x>50\).

Donc en fait, d'abord, sur le graphique, on a un segment horizontal dont les extrémités sont les points de coordonnées \((0;10)\) et \((50,10)\).
Ensuite, c'est une demi-droite contenue dans la droite représentant la fonction affine défine par \(x\mapsto~x-40\).

A bientôt.

Re: fonctions

Posté : mer. 20 avr. 2011 18:55
par emeline
je crois avoir compris en faite il y a deux droites différentes a tracer pour cette fonction

Re: fonctions

Posté : mer. 20 avr. 2011 19:39
par emeline
Merci, il me faudrai le nom de la fonction existe t-il ?

Re: fonctions

Posté : jeu. 21 avr. 2011 09:55
par emeline
je crois avoir compris il y a donc un segment passant par 10 et par le point de coordonné ( 10;50) et une demi droite commencant par 50 et par le point de coordonné ( 40; 100 )

Re: fonctions

Posté : dim. 24 avr. 2011 19:29
par SoS-Math(7)
Bonjour Emeline,

Il faut relire les différentes réponses faites à ce sujet. La fonction est composée de deux parties, la première est une fonction constante f(x)=10 pour x compris entre 0 et 50 et ensuite c'est une fonction affine.

Bonne continuation.