Page 1 sur 1
theo de thales
Posté : sam. 4 nov. 2017 09:12
par Frédéric
Bonjour
Je viens de voir que ma fille n'a pas fait son DM, je lui ai dis qu'on le fais chacun de son côté. Pour comparer les résultats.
Donc je vous mets ce que j'ai fais et m'expliquer ou j'ai faux.
1question:
Elles sont parallèle et secantes avec la hauteur du triangle [so] et [sm]
2question:
Je calcule Le
SM/SO=BD/LJ=MJ/OB
J'utilise SM/SO=BD/LJ
1,5/4,5=5/LJ
LJ=(4,5x5)/1,5=15
Vu que les 2 droites se coupent en leurs milieux LJ/2
15/2=7,5 donc MJ=7,5
Merci d'avance de votre aide
Re: theo de thales
Posté : sam. 4 nov. 2017 09:43
par sos-math(21)
Bonjour,
il y a un problème dans l'application du théorème de Thalès : celui-ci s'applique dans un triangle et les longueurs s'y rapportant.
Dans votre écriture de Thalès, vous mélangez deux triangles SBD et SOB. De plus vous avez inversé un rapport (BD/LJ) ce qui mène à une valeur fausse
Vous devez avoir comme relation \(\dfrac{SM}{SO}=\dfrac{SJ}{SB}=\dfrac{MJ}{OB}\) en appliquant le théorème de Thalès dans le triangle SOB avec \((MJ}//(OB)\).
La valeur MJ=7,5 n'est pas cohérente car elle est supérieure à la diagonale BD alors que MJ devrait être inférieure à BD
Je vous laisse reprendre cela.
Re: theo de thales
Posté : sam. 4 nov. 2017 13:34
par Frédéric
Merci mais sur le théorème de thalès que vous me dites je n'ai que 2 valeurs SM ET SO...Pour le calcul de MJ
Donc je dois OB=DB/2=5/2=2,5
SM/SO=MJ/OB
1,5/4,5=MJ/2,5
MJ = 0,83
Je crois que j'ai loupé un truc encore
Merci
Re: theo de thales
Posté : sam. 4 nov. 2017 14:24
par sos-math(21)
Bonjour,
oui c'est cela, vous devez juste calculer SO pour pouvoir appliquer le théorème de Thalès.
L'énoncé vous demande une réponse en valeur exacte, donc il faut répondre sous la forme d'une fraction.
Bonne continuation
Re: theo de thales
Posté : sam. 4 nov. 2017 14:42
par Frédéric
Bon si j'ai bien compris, c'est juste ce que j'ai fais ?
Ma fille a trouvé le même résultat en passant par Pythagore et le triangle SOB
Re: theo de thales
Posté : sam. 4 nov. 2017 14:44
par Frédéric
Pythagore puis après thalès
Re: theo de thales
Posté : sam. 4 nov. 2017 15:03
par sos-math(21)
Pythagore ? Dans quel triangle ?
Votre démarche (celle du papa) est correcte et me semble la mieux indiquée ici.
Re: theo de thales
Posté : sam. 4 nov. 2017 15:15
par Frédéric
Ma fille a calculé SB par Pythagore
SO2+OB2=SB2
Puis thalès
SM/SO=SJ/SB
Puis encore thalès
SJ/SB=MJ/OB
Re: theo de thales
Posté : sam. 4 nov. 2017 15:33
par sos-math(21)
Bonjour,
cela n'a aucun intérêt d'aller calculer SB, alors que l'on peut appliquer Thalès avec les deux autres rapports.
Dans le théorème de Thalès, il y a bien 3 rapports égaux mais il n'est pas nécessaire de connaître ces 3 rapports pour obtenir une longueur.
Ici, on a \(\dfrac{SM}{SO}=\dfrac{MJ}{OB}\) et on n'a besoin que de cela pour calculer MJ.
Cette démarche est alambiquée et risque de lui faire faire des erreurs car j'imagine qu'elle va ensuite utiliser une valeur approchée de SM ce qui l'éloignera de la demande de MJ en VALEUR EXACTE.
Est-ce que vous comprenez la différence ?
Re: theo de thales
Posté : sam. 4 nov. 2017 16:47
par Frédéric
Oui je comprends, je pense que c'est le chapitre thalès donc il faut rester sur thalès.
Bon maintenant, je vais essayer de lui faire comprendre et trouver tout ça...
Merci encore de m'avoir mis sur la bonne voie.
Re: theo de thales
Posté : sam. 4 nov. 2017 17:24
par SoS-Math(9)
Bon courage,
SoSMath.