géométrie

Retrouver tous les sujets résolus.
Répondre
ayann

géométrie

Message par ayann » sam. 8 mars 2014 17:34

Soit un triangle ABC tel que AB = 10 cm, AC = 6 cm et BC = 8cm.P est
Soit un triangle ABC tel que AB = 10 cm, AC = 6 cm et BC = 8cm.
P est un point du segment [AB]. PQCS est un rectangle inscrit dans le triangle ABC.
On pose AS =x
1 - Montrer que le triangle ABC est rectangle
2 - Quelles sont les valeurs que peut prendre x ?
3 - Montrer que PS = x
4 - a Exprime SC en fonction de x
b Soit A la fonction qui à x associe l'aire du rectangle PQCS exprimé en cm²
Montrer que A(x) = 8x - 4/3x²
SoS-Math(9)
Messages : 6351
Enregistré le : mer. 5 sept. 2007 12:10

Re: géométrie

Message par SoS-Math(9) » sam. 8 mars 2014 18:35

Bonjour,

Sur ce forum, on commence un message par une formule de politesse telle que bonjour ou bonsoir ...

Ensuite nous ne faisons pas les exercices des élèves !

Qu'as-tu fait dans cet exercice ?

SoSMath.
ayann

Re: géométrie

Message par ayann » dim. 9 mars 2014 00:35

bonjour,
g déjà fait exercices 1 et 2 pouvait vous m'aidez pour les suivant sil vous plait ?
sos-math(21)
Messages : 10401
Enregistré le : lun. 30 août 2010 11:15

Re: géométrie

Message par sos-math(21) » dim. 9 mars 2014 10:14

Bonjour,
es-tu sûr de ton énoncé ?
J'ai du mal à voir comment \(AS=PS=x\), alors que le triangle rectangle n'est pas isocèle....
Est-ce que ta figure ressemble à cela ?
triangle_et_rectangle.png
Je te laisse le fichier geogebra pour que tu le modifies.
Renvoie un message pour me confirmer tout cela.
Fichiers joints

Téléchargez la figure ici.

ayann

Re: géométrie

Message par ayann » dim. 9 mars 2014 13:27

bonjour,
voici la figure ci dessous et les énoncer g deja fait l'exercices 1 et 2
Fichiers joints
a.jpg
sos-math(21)
Messages : 10401
Enregistré le : lun. 30 août 2010 11:15

Re: géométrie

Message par sos-math(21) » dim. 9 mars 2014 15:46

Il manque effectivement un coefficient devant x.
Il faut que tu appliques le théorème de Thalès dans le triangle ABC avec (PS)//(BC).
Tu as \(\frac{AS}{???}=\frac{PS}{???}\) donc \(PS=....\).
je te laisse terminer.
Répondre