par Chris » dim. 11 déc. 2011 19:39
Bonjour je ne comprend pas pourquoi g'(x)<0??
ex > 0 donc g’’(x) est du signe de – x c’est à dire g’’(x) > 0 sur ] – ;0[ et g’’(x) < 0 sur ]0 ;+[. g’ est donc croissant sur ] – ;0[ et décroissant sur ]0 ;+[. Le maximum de g’ est donc g’(0) et
g’(0) = 0. Nous en déduisons que sur ] – ;0[ ]0 ;+[, g’(x) < 0.
Donc g est une fonction strictement décroissante sur IR. Or g (0) = 0. Nous pouvons donc en déduire
que sur ] – ;0[ g (x) > 0 et sur ]0 ;+[ g (x) < 0.
Bonjour je ne comprend pas pourquoi g'(x)<0??
ex > 0 donc g’’(x) est du signe de – x c’est à dire g’’(x) > 0 sur ] – ;0[ et g’’(x) < 0 sur ]0 ;+[. g’ est donc croissant sur ] – ;0[ et décroissant sur ]0 ;+[. Le maximum de g’ est donc g’(0) et
g’(0) = 0. Nous en déduisons que sur ] – ;0[ ]0 ;+[, g’(x) < 0.
Donc g est une fonction strictement décroissante sur IR. Or g (0) = 0. Nous pouvons donc en déduire
que sur ] – ;0[ g (x) > 0 et sur ]0 ;+[ g (x) < 0.