Exo suites

Répondre


Aide syntaxe LaTeX
Les BBCodes sont activés
[img] est désactivé
[flash] est désactivé
[url] est activé
Les smileys sont désactivés

Revue du sujet
   

Si vous souhaitez joindre un ou plusieurs fichiers, complétez les indications suivantes.

Étendre la vue Revue du sujet : Exo suites

Re: Exo suites

par SoS-Math(31) » mer. 13 nov. 2019 11:32

Bonjour François.
1) f est de la forme u/v. il faut dériver (u'v - v'u)/v² puis trouver le signe de la dérivée. Remarque le dénominateur est un carré donc positif. Le signe de la dérivée dépend que du numérateur.
2) la récurrence se fait en deux étapes :
Initialisation : vérifier que u0 appartient à I.
Hérédité : Prend en entier k tel que uk appartient à I et montre alors que uk+1 appartient aussi à I. (il faut partir de 0 < uk < 1 et arriverà (4uk+1)/(2uk +3).

Exo suites

par François » mar. 12 nov. 2019 21:11

Bonjour je suis face à un exercice auquel je bute. Soit I l’intervalle [0 ; 1]. On considère la fonction f définie sur I par
\(f(x)= \frac{4x+1}{2x+3}\)

Je n'arrive pas à trouver la réponse aux questions après de nombreux essaies.
1) Etudier les variations de f sur I et en déduire que, pour tout x élément de I, f(x) appartient à I.

2) On considère la suite (un) définie par u0 = 0 et pour tout n de N, \(U_{n+1}=\frac{4U_{n}+1}{2U_{n}+3}\)
Montrer par récurrence que, pour tout n, un appartient à I.

3) graphique (je sais faire)

4) Établir la relation \(U_{n+1}- U_{n}=\frac{(1U_{n})(2U_{n}+1)}{2U_{n}+3}\)
En déduire le sens de variation de la suite (un).
5) Démontrer que la suite (un) est convergente.
6) La limite l de la suite (un) vérifie l = f(l) . Calculer l .

Voilà si quelqu'un pourrait m'aider c'est très importants nous allons bientôt commencer un nouveau chapitre.
Merci

François

Haut