Spécialité : problème

Répondre


Aide syntaxe LaTeX
Les BBCodes sont activés
[img] est désactivé
[flash] est désactivé
[url] est activé
Les smileys sont désactivés

Revue du sujet
   

Si vous souhaitez joindre un ou plusieurs fichiers, complétez les indications suivantes.

Étendre la vue Revue du sujet : Spécialité : problème

Re: Spécialité : problème

par SoS-Math(9) » dim. 4 déc. 2016 10:54

Bonjour Axelle,

Effectivement, avec A = 3q+r, je n'ai pas trouvé de solution !
J'ai une autre idée : Pour tout nombre entier A, il existe p tel que \(3^{p-1}<A<3^{p+1}\).

Bon courage,
SoSMath.

Re: Spécialité : problème

par Axelle » sam. 3 déc. 2016 17:37

Merci pour ces réponses !
Justement pour le j(k) je voulais prendre sa partie entière. Et aussi, je ne vois pas avec le 3q+r...

Re: Spécialité : problème

par SoS-Math(9) » sam. 3 déc. 2016 16:00

Bonjour Axelle,

J'ai commencé à réfléchir à ton problème, mais je n'ai pas encore de solutions ...
Cependant, ton j(k) est faux ... car j(k) doit être un entier et le tien n'est pas un entier (à moins que ln((2(A^(k+1)-1)/(A-1)) soit un multiple de ln(3) ...).
Voici une piste (bonne ?) : on peut poser A = 3q + r ....

SoSMath.

Re: Spécialité : problème

par SoS-Math(33) » sam. 3 déc. 2016 15:56

Bonjour Axelle,
pour l'unicité a tu pensé à un raisonnement par l'absurde?

Spécialité : problème

par Axelle » sam. 3 déc. 2016 14:49

Bonjour.

Je poste ce message car j'ai un grand besoin d'aide sur un problème de Spé, un peu hors programme d'ailleurs.
On s'intéresse aux fonctions multiplicatives définies de la façon suivante :
on dit que f est (faiblement) multiplicative si pour tout couple (n;m) d'entiers naturels non nuls avec PGCD(n;m)=1 on a f(nm)=f(n)*f(m).
Dans le problème, on pose g = ln (f) et on a donc PGCD(n;m) =1 implique que g(nm)=g(n)+g(m).

Soit A un entier supérieur ou égal à 2 et k > 0.
a) Montrer qu'il existe un unique entier j(k) vérifiant :
3^(j(k)-1) - (3^(j(k)-2) +...+1) < A^k +...+1 <3^j(k) - (3^(j(k)-1)+...+1) et déterminer l'expression de j(k) en fonction de A et k.
b) En déduire que k*g(A)<j(k)*g(3).

Voici mon début de recherche :
a) J'ai trouvé l'expression de j(k) il me semble, ça vaut :
partieentière de ln((2(A^(k+1)-1)/(A-1))/ln(3) si tout va bien (pardon pour les nombreuses parenthèses !).
Le seul problème c'est que je n'arrive pas à prouver l'existence et l'unicité de j(k). Pouvez-vous m'aider ?

b) Si mon expression de j(k) est correcte çà devrait aller. Le seule problème, c'est que je n'arrive pas à calculer g(3).

Merci par avance pour votre réponse.


Axelle

Haut