par eleve19 » jeu. 27 sept. 2012 18:25
Bonsoir,
J'ai réfléchi depuis le premier message, j'ai donc trouve que le nombre de triangles ajoutés à l'étape n est Sn. Je trouve donc An+1-An=Sn x (Ln^2 x racine de 3)/4. Est que c'est juste?
Je bloque maintenant sur la troisième question :
En calculant la somme des Ak+1-Ak pour k compris entre 1 et n-1, c'est à dire sigma k=1 n-1 de Ak+1-Ak, exprimer An en fonction de n pour tout entier n supérieur ou égal à 1.
Pouvez vous m'aider , est ce que cela signifie que l'on fait la somme des Ak+1-Ak est égale à : A2-A1+A3-A2+...+An-An+1 ?
que faire ensuite?
Merci
Bonsoir,
J'ai réfléchi depuis le premier message, j'ai donc trouve que le nombre de triangles ajoutés à l'étape n est Sn. Je trouve donc An+1-An=Sn x (Ln^2 x racine de 3)/4. Est que c'est juste?
Je bloque maintenant sur la troisième question :
En calculant la somme des Ak+1-Ak pour k compris entre 1 et n-1, c'est à dire sigma k=1 n-1 de Ak+1-Ak, exprimer An en fonction de n pour tout entier n supérieur ou égal à 1.
Pouvez vous m'aider , est ce que cela signifie que l'on fait la somme des Ak+1-Ak est égale à : A2-A1+A3-A2+...+An-An+1 ?
que faire ensuite?
Merci