par Cédric » jeu. 27 oct. 2011 08:46
Bonjour,
Soit R la rotation de centre G et d'angle a et H l'homothétie de centre G et de rapport K.
J'arrive à montrer que si g est la composée commutative de R et H alors g est une similitude directe de centre G, d'angle a et de rapport K, c'est-à-dire RoH=HoR=g mais je n'arrive pas à établir la réciproque : si g est une similitude directe de centre G, de rapport K et d'angle a alors g est la composée commutative de H et R.
Merci,
Cordialement,
Cédric
Bonjour,
Soit R la rotation de centre G et d'angle a et H l'homothétie de centre G et de rapport K.
J'arrive à montrer que si g est la composée commutative de R et H alors g est une similitude directe de centre G, d'angle a et de rapport K, c'est-à-dire RoH=HoR=g mais je n'arrive pas à établir la réciproque : si g est une similitude directe de centre G, de rapport K et d'angle a alors g est la composée commutative de H et R.
Merci,
Cordialement,
Cédric