Exo I

Répondre


Veuillez faire glisser les différentes réponses possibles dans la liste appropriée. Ceci est une mesure permettant de lutter contre les inscriptions automatisées.
Propositions de réponse
  • 49
  • 9
  • 7
  • 5
Réponse

Aide syntaxe LaTeX
Les BBCodes sont activés
[img] est désactivé
[flash] est désactivé
[url] est activé
Les smileys sont désactivés

Revue du sujet
   

Étendre la vue Revue du sujet : Exo I

Re: Exo I

par SoS-Math(9) » dim. 8 nov. 2020 11:56

Bonjour Clémence,

Oui, c'est exactement ce qu'il faut faire pour la question2.

SoSMath.

Re: Exo I

par Invité » dim. 8 nov. 2020 11:44

OK merci !

Pour la question 2, j'ai un doute : est ce qu'il faut d'abord exprimer A triangle B différemment de ce qui est écrit dans l'énoncé, avec uniquement des symboles union et intersection ? Et après on passerait au complémentaire ?

Re: Exo I

par sos-math(21) » dim. 8 nov. 2020 11:33

AB correspond aux éléments de A auxquels on enlève les éléments de B qui sont dans A : on fait bien une sorte de différence...
Cela correspon aussi à A¯B donc 1AB=1A¯B=1A×1¯B=1A×(11B)=1A1A×1B

Re: Exo I

par Invité » dim. 8 nov. 2020 11:24

Je comprends pas, pourquoi la barre est une différence ?

Je parle de cette barre : \

Ça me pose problème des la question 1...

Re: Exo I

par sos-math(21) » dim. 8 nov. 2020 11:21

La barre est une différence donc c'est le signe - dans les opérations avec les fonctions indicatrices.

Re: Exo I

par Invité » dim. 8 nov. 2020 11:19

D'accord merci je connaissais pas ces propriétés des fonctions indicatrices !

Mais ce qui me pose problème c'est la barre dans la définition de la différence symétrique.

On n'a pas de propriété là dessus avec la fonction indicatrice si ?

Re: Exo I

par sos-math(21) » dim. 8 nov. 2020 11:14

Il faut utiliser les propriétés des fonctions indicatrices :
1AB=1A×1B
1AB=1A+1B1AB=1A+1B1A×1B
Tu devrais t'en sortir avec cela

Re: Exo I

par Invité » dim. 8 nov. 2020 11:00

Ah oui merci !

Et pour la question 3 comment faut-il s'y prendre ?

J'ai essayé de faire une double inclusion encore, mais ça fonctionne pas trop. ..

Re: Exo I

par sos-math(21) » dim. 8 nov. 2020 10:52

Bonjour,
pour l'existence, c'est assez évident AΔA=.
Pour l'unicité, il suffit de voir que AΔB=ABAB donc si AΔX= alors AX=AX ce qui implique (à détailler) A=X.
Bonne continuation

Re: Exo I

par Invité » dim. 8 nov. 2020 10:44

Bonjoir merci d'avoir répondu

Est-ce que vous pourriez juste me dire comment raisonner pour la question 5 ? Celle ci je n'y arrive vraiment pas...

Re: Exo I

par sos-math(21) » dim. 8 nov. 2020 08:09

Bonjour,
effectivement tu peux travailler par double inclusion :
si xAΔB alors xABouxBA
  • Si xAB alors cela signifie xA et xB donc en traduisant par "négation" x¯A et x¯B donc cela traduit le fait que x¯B¯A
  • le même raisonnement permet de dire que si xBA alors x¯A¯B
Donc au final on a montré AΔB¯AΔ¯B
Il faut faire l'autre inclusion qui fonctionne de la même manière.
Pour les autres c'est sensiblement la même démarche : il faut s'attacher à traduire l'appartenance à chaque ensemble par des conditions que l'on exploite.
Bonne continuation

Exo I

par Clémence » dim. 8 nov. 2020 02:10

Bonsoir

Comme vous m'aviez bien aidée la semaine derniere, je vous renvois quelques exos.
Ces exos sont pour lundi alors que je suis complètement coincée dessus...

Pourriez vous m'aider dans cet exo à faire les questions 2,3 et 5 ?

https://www.cjoint.com/data/JKibjVtqcZH_exo-I.png

je n'y arrive pas du tout, je pense juste qu'il faut faire une double inclusion à la 2, mais pourriez vous me montrer comment rédiger, au moins une inclusion svp ?

Et pour la 3 et la 5 ?

merci bon dimanche à vous !

Haut