Autre exo calcul

Répondre


Veuillez faire glisser les différentes réponses possibles dans la liste appropriée. Ceci est une mesure permettant de lutter contre les inscriptions automatisées.
Propositions de réponse
  • 49
  • 9
  • 5
  • 7
Réponse

Aide syntaxe LaTeX
Les BBCodes sont activés
[img] est désactivé
[flash] est désactivé
[url] est activé
Les smileys sont désactivés

Revue du sujet
   

Étendre la vue Revue du sujet : Autre exo calcul

Re: Autre exo calcul

par SoS-Math(25) » sam. 10 oct. 2020 18:54

Schwartz te donne dans les bonnes conditions :

2Φxy=2Φyx

Il est appliqué sur une seule fonction que l'on dérive deux fois.

J'ai l'impression que cela ne change pas grand chose pour le calcul à la fin.

A bientôt

Re: Autre exo calcul

par Invité » sam. 10 oct. 2020 17:41

Attention à ne pas confondre les fonctions et les produits avec des opérateurs de dérivation.
Que voulez-vous dire ici ? Pourriez-vous préciser ?

Car effectivement je sens que qqchose n'est pas clair dans tout ça dans ma tête...

Et vous avez l'air d'avoir trouvé quoi.

Re: Autre exo calcul

par SoS-Math(25) » sam. 10 oct. 2020 17:33

Attention à ne pas confondre les fonctions et les produits avec des opérateurs de dérivation.

La comme ça je ne vois pas trop de simplification

Bon courage

Re: Autre exo calcul

par Invité » sam. 10 oct. 2020 16:35

d'accord merci

mais est-ce que ça simplifie ?
avec le théorème de Schwartz peut être ?

Re: Autre exo calcul

par SoS-Math(25) » sam. 10 oct. 2020 16:18

Cela me semble correct.

A bientôt

Re: Autre exo calcul

par Inès » sam. 10 oct. 2020 15:45

Merci

est-ce que l'on a :

Axx=2Φxy×Ψz+2Ψxz×Φy2Φxz×Ψy2Ψxy×Φz

est-ce correct ?

Re: Autre exo calcul

par SoS-Math(25) » sam. 10 oct. 2020 15:41

Bonjour Inès,

Par linéarité :

Il va donc falloir calculer x(Φy.Ψz)x(Φz.Ψy)

x(Φy.Ψz) est la dérivée par rapport à x d'un produit de deux fonctions.

De même pour x(Φz.Ψy).

Bon courage

Re: Autre exo calcul

par Invité » sam. 10 oct. 2020 14:07

Merci beaucoup.

Pour le calcul de div A :

calculons déjà Axx.

On doit donc calculer : x(Φy.ΨzΦz.Ψy)

Pourriez vous m'expliquer comment calculer ça svp ?

Je reconnais bien qu'il s'agit de produits, mais j'ai du mal comme c'est des dérivées partielles...

Re: Autre exo calcul

par sos-math(21) » sam. 10 oct. 2020 13:59

Bonjour,
ton calcul me semble correct.
Bonne continuation

Autre exo calcul

par Inès » sam. 10 oct. 2020 13:11

Bonjour

Un nouvel exo de calcul :

https://www.cjoint.com/data/JJkmgDrM1nf_exo1-1.png

Voici ce que j'ai trouvé pour la (a) :

A=(Φy.ΨzΦz.ΨyΦx.Ψz+Φz.ΨxΦx.ΨyΦy.Ψx)

Est ce que c'est correct ?

merci

Haut