Maths

Répondre


Aide syntaxe LaTeX
Les BBCodes sont activés
[img] est désactivé
[flash] est désactivé
[url] est activé
Les smileys sont désactivés

Revue du sujet
   

Si vous souhaitez joindre un ou plusieurs fichiers, complétez les indications suivantes.

Étendre la vue Revue du sujet : Maths

Re: Maths

par SoS-Math(31) » mer. 23 sept. 2020 13:21

Bonjour,
Voici une vidéo qui t'explique comment paramétrer une courbe :https://youtu.be/myLy2CaJck0
Bonne continuation.

Re: Maths

par Invité » lun. 21 sept. 2020 23:51

Bonsoir

Après 10 jours de déni face à ces maths que je n'arrive pas / plus à absorber, j'ai décidé de réessayer de comprendre...

J'ai lu le lien que vous m'avez envoyé mais il y a toujours quelque chose que je comprend pas, c'est comment paramétrer une courbe ?
Auriez vous un exemple de paramétrage de courbe, avec des étapes clairement définis ?

j'ai vraiment besoin de ça....

merci énormément sos21

Re: Maths

par sos-math(21) » sam. 12 sept. 2020 11:51

Bonjour,
un paramétrage de courbe permet de parcourir celle-ci point par point. Cette courbe étant une courbe du plan (voire de l'espace), elle a besoin d'être paramétrée selon deux dimensions (les deux directions du repère dans un plan).
Ensuite une fois que la courbe est paramétrée, on peut utiliser des "fonctions" qui sont définies sur cette courbe : c'est la notion de forme différentielle dont l'expression est \(Pdx+Qdy\).
Le théorème de Green-Riemann est un cas particulier de la formule de Stokes.
Pour t'éclaircir les idée, je te conseille de consulter le cours suivant : http://ressources.unisciel.fr/pfci/cours/Int_Curviligne/co/Int_Curviligne_webUnisciel.html
Bonne continuation

Re: Maths

par Invité » mar. 8 sept. 2020 01:30

Je me focalise sur l'intégrale curviligne.

Plusieurs questions là-dessus :

Comment paramétrer une courbe ?
Pourquoi y a-t-il plusieurs variables (x, y...) ?

Que faire quand on a paramétré la courbe ? Pourquoi parler de P et de Q, où interviennent-ils ?

Dernièrement : y a-t-il un lien entre le théorème de Green-Ostrogradski et les intégrales curvilignes ? Et le théorème de Stokes ?

Voilà, désolée de poser autant de questionzsw, je suis perdue...

Re: Maths

par sos-math(21) » lun. 7 sept. 2020 19:34

Bonjour,
concernant tes questions sur les potentiels, je n'ai pas assez de connaissances dans ces domaines pour te l'expliquer clairement.
Je pense que tu peux poser tes questions sur le forum sos-physique-chimie : http://sosphysique.ac-poitiers.fr/
Bonne continuation

Re: Maths

par Invité » lun. 7 sept. 2020 13:15

Merci bcp de l'aide et d'avoir répondu hier.

Avez vous le temps cet apres midi de répondre aux autres questions envoyées samedi soir ?

Je vous suis, une fois de +, très reconnaissante pour toute l'aide apportée

Re: Maths

par sos-math(21) » lun. 7 sept. 2020 12:21

Bonjour,
Pour des exemples d'intégrales curvilignes, je t'avais déjà donné un lien vers des exercices corrigés.
En voici un nouveau http://exo7.emath.fr/ficpdf/fic00139.pdf
et une autre fiche : http://exo7.emath.fr/ficpdf/fic00158.pdf
Quand on parle d'intégrale de Riemann, on fait référence à l'intégrale classique sur un segment de \(\mathbb{R}\), c'est-à-dire celle qui se définit avec une variable qui parcourt un intervalle de \(\mathbb{R}\), ce qui n'est pas le cas des intégrales curvilignes.
Lorsqu'on a une intégrale curviligne, le paramétrage de la courbe sur laquelle la fonction est définie permet de passer de l'intégrale curviligne à l'intégrale de Riemann en utilisant le paramètre de la courbe qui, lui, part d'un segment de \(\mathbb{R}\), ce qui permet de ramener le calcul de l'intégrale curviligne à celui d'une intégrale de Riemann : voir les 3 premiers exercices du premier lien.
Bonne continuation

Re: Maths

par Invité » dim. 6 sept. 2020 12:45

Bonjour sos maths 21

avez vous reçu mon msg d'hier soir avec bcp (trop) de questions ?

le forum ferme à 14h, j espere que vous aurez le temps de me répondre cet apres midi en répondant dans mon message comme fait une autre fois.

MERCI


Bonjour,
Je réponds dans ton message mais je ne pourrai pas répondre à toutes tes demandes
Pour des exemples d'intégrales curvilignes, je t'avais déjà donné un lien vers des exercices corrigés.
En voici un nouveau http://exo7.emath.fr/ficpdf/fic00139.pdf
et une autre fiche : http://exo7.emath.fr/ficpdf/fic00158.pdf
Quand on parle d'intégrale de Riemann, on fait référence à l'intégrale classique sur un segment de \(\mathbb{R}\), c'est-à-dire celle qui se définit avec une variable qui parcourt un intervalle de \(\mathbb{R}\), ce qui n'est pas le cas des intégrales curvilignes.
Lorsqu'on a une intégrale curviligne, le paramétrage de la courbe sur laquelle la fonction est définie permet de passer de l'intégrale curviligne à l'intégrale de Riemann en utilisant le paramètre de la courbe qui, lui, part d'un segment de \(\mathbb{R}\), ce qui permet de ramener le calcul de l'intégrale curviligne à celui d'une intégrale de Riemann : voir les 3 premiers exercices du premier lien.
Pour le reste, je compléterai ma réponse plus tard.
Bonne continuation


Re: Maths

par Invité » dim. 6 sept. 2020 00:29

merci de votre réponse

l'ennui est que ces exos utilisent des notions que je n'ai jamais vu (th de Poincaré, "forme différentielle fermée'"...).

j'ai numéroter mes questions.... tellement j'en ai :( :(

1. Est-ce que vous pourriez me montrer un exemple de calcul simple d'intégrale curviligne ? Sans notion compliquée ? Si ça existe... :(
Surtout : à quoi correspond un paramétrage ? Comment s'en sert-on ensuite ?

2. Dans mon cours : https://www.heberger-image.fr/image/onbgH, on parle de réduction à une intégrale de Riemann : c'est quoi ? Tout ce dont je me rappelle de la prépa c'est la somme de Riemann, on a jamais vu d'intégrale de Riemann...

3 autres questions :

3. Qu'est ce qu un potentiel scalaire ?
4. Qu'est ce qu'un domaine connexe ?
5. Connaissez-vous la condition de Cauchy-Riemann d’existence du potentiel ? Pourriez vous me l expliquer svp ?

J'ai des choses là dessus dans mon cours mais je n'y comprends rien : https://www.heberger-image.fr/image/onWSt

Je suis encore désemparée...

merci bcp de m'aider

le forum ferme encore le dimanche après midi ? J espère que non... Sinon je vais devoir vous poser bcp de questions le dimanche matin

MERCI

Re: Maths

par sos-math(21) » sam. 5 sept. 2020 14:42

Bonjour,
une intégrale curviligne est une intégrale où la fonction à intégrer est évaluée sur une courbe.
Pour calculer une intégrale curviligne, il faut souvent chercher à obtenir un paramétrage de la courbe sur laquelle la fonction est définie et on intègre sur l'intervalle de définition du paramètre.
Si tu veux voir des exemples corrigés, je te conseille de consulter la page suivante : http://www.bibmath.net/ressources/index.php?action=affiche&quoi=bde/analyse/integration/integrales-curvilignes&type=fexo
Bon courage

Re: Maths

par Invité » sam. 5 sept. 2020 14:30

merci énormément

j essaye de reprendre dans l ordre ce que je n'ai pas compris...

déjà : comment calculer une intégrale curviligne ?

Re: Maths

par sos-math(21) » sam. 5 sept. 2020 09:25

Bonjour,
bien entendu tu peux poser d'autres questions mais le forum reste au niveau de l'enseignement secondaire : nous n'aurons pas toujours les réponses pour les questions de l'enseignement supérieur.
Bonne continuation

Re: Maths

par Invité » ven. 4 sept. 2020 21:43

Je vais essayez de comprendre et je vous dirais si j ai compris !

Ai je la possibilite de poser d autres quesitons ?

merci

Re: Maths

par sos-math(21) » ven. 4 sept. 2020 21:21

Bonjour,
le théorème de Green-Riemann permet de calculer des intégrales sur un compact \(K\) en fonction d'une intégrale curviligne le long de sa frontière \(\partial K\). Pour pouvoir s'appliquer, il faut que le compact vérifie certaines conditions de régularité : il faut que \(K\) soit un compact à bord, ce qui se traduit intuitivement que sa frontière est une courbe orientable et \(\mathcal{C}^1\) par morceaux.
Il peut s'utiliser pour calculer l'aire de certaines surfaces fermées délimitées par des courbes.
Par exemple, si \(K\) est un compact à bord, son aire \(\mathcal{A}=\iint_{K}^{}dxdy\) peut s'exprimer, d'après le théorème de Green Riemann, avec la forme différentielle \(\alpha = Pdx+Qdy=ydx+xdy\) :
\(\displaystyle \int_{\partial K^{+}}^{} (ydx+xdy)=\iint_{K}^{}\left(\dfrac{\partial Q}{\partial x}(x,y)-\dfrac{\partial P}{\partial y}(x,y)\right)dxdy=\iint_{K}^{}(1-1)dxdy=0\) donc \(\displaystyle \int_{\partial K^{+}}^{} xdy=- \int_{\partial K^{+}}^{} ydx\)
De même avec la forme différentielle \(\beta = -ydx+xdy\), on a
\(\displaystyle \int_{\partial K^{+}}^{} (-ydx+xdy)=\iint_{K}^{}\left(\dfrac{\partial Q}{\partial x}(x,y)-\dfrac{\partial P}{\partial y}(x,y)\right)dxdy=2\iint_{K}^{}dxdy=2\mathcal{A}\)
ainsi l'aire du compact vérifie :
\(\displaystyle\mathcal{A}=\int_{\partial K^{+}}^{}xdy=-\int_{\partial K^{+}}^{}ydx=\dfrac{1}{2}\int_{\partial K^{+}}^{}(xdy-ydx)\)

Donc si on applique cela à une ellipse avec \(x=a\cos(t)\) et \(y=b\sin(t)\) avec \(t\in[0\,;\,2\pi]\), on a :
\(\displaystyle \mathcal{S}=-\int_{\partial K^{+}}^{}ydx=-\int_{0}^{2\pi}b\sin(t)(-a\sin(t))dt=ab\int_{0}^{2\pi}\sin^{2}(t)dt\) soit en calculant cette intégrale (en linéarisant \(\sin^{2}(t)=\dfrac{1-\cos(2t)}{2}\) ), on a \(\displaystyle \mathcal{S}=\dfrac{ab}{2}\int_{0}^{2\pi}(1-\cos(2t))dt=\dfrac{ab}{2}\left[ t-\frac{1}{2}\sin(2t)\right] _{0}^{2\pi}=\pi ab\)
Et on retrouve l'aire de l'ellipse.
Est-ce plus clair ?
Bonne continuation

Re: Maths

par Invité » ven. 4 sept. 2020 20:24

Je vais essayer de comprendre seule avec votre message merci

Connaissez vous le théorème de Green ?

Je n'y a i strictement r compris...

merci de m'aider en tt cas

Haut