question Integral

Répondre


Veuillez faire glisser les différentes réponses possibles dans la liste appropriée. Ceci est une mesure permettant de lutter contre les inscriptions automatisées.
Propositions de réponse
  • Lundi
  • Jeudi
  • Dimanche
  • Mardi
Réponse

Aide syntaxe LaTeX
Les BBCodes sont activés
[img] est désactivé
[flash] est désactivé
[url] est activé
Les smileys sont désactivés

Revue du sujet
   

Étendre la vue Revue du sujet : question Integral

Re: question Integral

par sos-math(21) » mer. 13 mai 2020 12:25

Bonjour,
oui, c'est la même démarche. Dans le cas de cette propriété, on prend un élément de l'intervalle et on calcule directement son symétrique par rapport à a.
si on prend xDf, alors le symétrique de x par rapport à a est le nombre x tel que a soit au milieu de x et x donc x+x2=a soit en multipliant par 2 et en passant le x de l'autre côté, on a x=2ax.
Donc on vérifie bien la symétrie de l'intervalle par rapport à π4 en regardant si pour tout réel x de l'intervalle, son symétrique par rapport à x, 2ax=π2x est aussi dans l'intervalle.
Dans le premier cas on raisonne en terme de rayon autour du centre de symétrie (ax et a+x) alors que dans le deuxième cas, on raisonne en terme d'abscisse du point dans l'intervalle et de son symétrique.
Mais dans les deux cas, on balaie bien l'intégralité de l'intervalle.

Re: question Integral

par Yessine » mer. 13 mai 2020 12:05

Bonjour

Merci beaucoup de toutes ces explications.
dans la correction il a vérifie que 2axDf puis il a calculé f(2ax)+f(x)=2b
est-ce que c'est une autre propriété ?

Re: question Integral

par sos-math(21) » mer. 13 mai 2020 09:38

Bonjour,
pour appliquer cette propriété, il faut que le domaine de définition soit symétrique par rapport à un réel de l'axe des réels. Ici c'est le cas avec a=π4.
La propriété dit "pour tout réel xDf tel que axDf et a+xDf".
Donc cela ne correspond pas à tout le domaine, seulement la partie de celui-ci qui vérifie cette condition.
Ici, il faut donc que tu raisonnes pour tout x[0;π4], et dans ce cas x+π4Df et π4xDf.
Il te reste à appliquer cette propriété avec les réels dans cet intervalle.
Bonne continuation

Re: question Integral

par Yessine » mer. 13 mai 2020 09:29

Bonjour
j'ai un problème lorsque j'ai appliqué le théorème :
1.png
pour a=Π4 et b=12
pour tout x[0,Π2]x+Π4[0,Π2] donc je ne peux pas appliqué le théorème
qu'est ce que je dois faire ?
pouvez vous m'aider?
Merci encore de m'aider

Re: question Integral

par SoS-Math(34) » lun. 11 mai 2020 15:38

Bonjour Yessine,

Pour mieux comprendre, je te propose de regarder cette vidéo :
https://www.youtube.com/watch?v=Lc5VctfJZbM

Si ça n'est pas assez détaillé, voici un complément un peu plus long mais davantage détaillé :
vidéo 1 : https://www.youtube.com/watch?v=cgjOrr49hrw
vidéo 2 : https://www.youtube.com/watch?v=Kcd7GRh7xZE

Bon visionnage,
sosmaths

question Integral

par Yessine » lun. 11 mai 2020 13:12

Bonjour,
Ex:
Ex.png
je ne comprends pas la correction de question 1)b):
1.png
2.png
pouvez vous m'aider?
Merci d'avance

Haut