fonctions de references

Répondre


Veuillez faire glisser les différentes réponses possibles dans la liste appropriée. Ceci est une mesure permettant de lutter contre les inscriptions automatisées.
Propositions de réponse
  • Mars
  • Janvier
  • Décembre
  • Juillet
Réponse

Aide syntaxe LaTeX
Les BBCodes sont activés
[img] est désactivé
[flash] est désactivé
[url] est activé
Les smileys sont désactivés

Revue du sujet
   

Étendre la vue Revue du sujet : fonctions de references

Re: fonctions de references

par sos-math(21) » dim. 2 déc. 2018 12:19

Bonjour,
as-tu obtenu la forme demandée ?
Pour l'obtenir, il suffit de multiplier par l'expression conjuguée pour faire disparaître la racine carrée du numérateur :
x31x4=(x31)(x3+1)(x4)(x3+1) de sorte qu'au numérateur, tu reconnaisses une identité remarquable de la forme (ab)(a+b)=a2b2.
Avec la forme obtenue, tu pourras ensuite obtenir le sens de variation de la fonction en travaillant par composition
xaffinex3x3racinecarreex3affinex+1x3+1inverse1x3+1
Ta fonction est un enchaînement de fonctions dont tu connais le sens de variation.
Je te laisse terminer.

Re: fonctions de references

par rebeckha » dim. 2 déc. 2018 12:04

est ce que je peux avoir de l'aide pour étudier le sens de variation de f(x)

Re: fonctions de references

par SoS-Math(9) » sam. 1 déc. 2018 16:04

Bonjour Rebeckha,

je ne comprends pas ta question ... tu viens de trouver E = [3;44;∞[.
Que veux-tu faire de plus ?

SoSMath.

Re: fonctions de references

par rebeckha » sam. 1 déc. 2018 15:59

comment prouver que f(x) est définit sur un ensemble E avec pour ensemble de définition [3;44;∞[

Re: fonctions de references

par SoS-Math(25) » sam. 1 déc. 2018 15:56

C'est cela

A bientôt

Re: fonctions de references

par rebeckha » sam. 1 déc. 2018 15:54

j'en conclus que l'ensemble de définition est donc [3;44;∞[

Re: fonctions de references

par sos-math(21) » sam. 1 déc. 2018 15:50

Oui c'est cela donc je te laisse conclure : tu as trouvé la borne recherchée.
Bonne continuation

Re: fonctions de references

par rebeckha » sam. 1 déc. 2018 15:43

x-3 >0 donne x>3

Re: fonctions de references

par sos-math(21) » sam. 1 déc. 2018 14:41

Bonjour,
Il faut que tu aies x30 pour que la racine carrée soit définie donc x ce qui donne l'intervalle [;+[ mais dans cet intervalle, il y a la valeur interdite du quotient donc il faut enlever 4 de cet intervalle, ce qui fait deux intervalles : la partie à gauche de 4 et celle à droite de 4 : donc Df=[;4[]4;+[
Je te laisse terminer.
Bonne continuation

Re: fonctions de references

par rebeckha » sam. 1 déc. 2018 14:32

-∞;44;∞[
???

Re: fonctions de references

par SoS-Math(25) » sam. 1 déc. 2018 14:05

f(x)=x31x4

Effectivement, f est définie sur ]4;+∞[ mais aussi sur un autre ensemble... si x=3,5 par exemple, f(x) existe.

[...?...;...?...4;+∞[

Re: fonctions de references

par rebeckha » sam. 1 déc. 2018 13:13

]4;∞[
???

Re: fonctions de references

par SoS-Math(25) » sam. 1 déc. 2018 12:16

rebeckha a écrit :x-4 diffèrent de 0 revient a dire que x n'est pas égale a 4
Oui
rebeckha a écrit : l'ensemble de définition est donc [3;+∞[
Non car 4 appartient à l'intervalle [3;+∞[ et on ne peut pas diviser par 0 dans f(x)=x31x4 ...(Autrement dit, 4 n'a pas d'image par f)

Il te faut donc exclure 4 du domaine de définition.

Re: fonctions de references

par rebeckha » sam. 1 déc. 2018 12:11

x-4 diffèrent de 0 revient a dire que x n'est pas égale a 4

l'ensemble de définition est donc [3;+∞[

Re: fonctions de references

par SoS-Math(25) » sam. 1 déc. 2018 12:05

rebeckha a écrit :x-4 diffèrent de 0 revient a dire que x>4
Non, si x=2 (par exemple) on a aussi x40...
rebeckha a écrit :
oui une erreure desole cela donne [3;4]U[4;∞[
Non, [3;4]U[4;+∞[=[3;+∞[, tu n'as pas enlevé 4 de l'ensemble...

Tu y es presque

A bientôt

Haut