par SoS-Math(33) » jeu. 1 nov. 2018 10:43
Bonjour,
je pense que tu t'es perdue dans les calculs.
On reprend :
\(\frac{W_{n+1}}{W_n}\) = \(\large\frac{\frac{U_{n+1}}{1-U_{n+1}}}{\frac{U_n}{1-U_n}}\) = \(\large\frac{U_{n+1}}{1-U_{n+1}}\times \frac{1-U_n}{U_n}\)
= \(\large\frac{\frac{3U_n}{1+2U_n}}{1-\frac{3U_n}{1+2U_n}}\times \frac{1-U_n}{U_n}\)
= \(\large\frac{\frac{3U_n}{1+2U_n}}{\frac{1+2U_n-3U_n}{1+2U_n}}\times \frac{1-U_n}{U_n}\)
= \(\large\frac{\frac{3U_n}{1+2U_n}}{\frac{1-U_n}{1+2U_n}}\times \frac{1-U_n}{U_n}\)
= \(\large\frac{3U_n}{1-U_n}\times \frac{1-U_n}{U_n}\)
= 3
Voici le détails du calcul.
SoS-math
Bonjour,
je pense que tu t'es perdue dans les calculs.
On reprend :
[tex]\frac{W_{n+1}}{W_n}[/tex] = [tex]\large\frac{\frac{U_{n+1}}{1-U_{n+1}}}{\frac{U_n}{1-U_n}}[/tex] = [tex]\large\frac{U_{n+1}}{1-U_{n+1}}\times \frac{1-U_n}{U_n}[/tex]
= [tex]\large\frac{\frac{3U_n}{1+2U_n}}{1-\frac{3U_n}{1+2U_n}}\times \frac{1-U_n}{U_n}[/tex]
= [tex]\large\frac{\frac{3U_n}{1+2U_n}}{\frac{1+2U_n-3U_n}{1+2U_n}}\times \frac{1-U_n}{U_n}[/tex]
= [tex]\large\frac{\frac{3U_n}{1+2U_n}}{\frac{1-U_n}{1+2U_n}}\times \frac{1-U_n}{U_n}[/tex]
= [tex]\large\frac{3U_n}{1-U_n}\times \frac{1-U_n}{U_n}[/tex]
= 3
Voici le détails du calcul.
SoS-math