DM sur le produit des racines d'un polynôme de degré 2

Répondre


Veuillez faire glisser les différentes réponses possibles dans la liste appropriée. Ceci est une mesure permettant de lutter contre les inscriptions automatisées.
Propositions de réponse
  • Bleu
  • Rouge
  • Vert
  • Noir
Réponse

Aide syntaxe LaTeX
Les BBCodes sont activés
[img] est désactivé
[flash] est désactivé
[url] est activé
Les smileys sont désactivés

Revue du sujet
   

Étendre la vue Revue du sujet : DM sur le produit des racines d'un polynôme de degré 2

Re: DM sur le produit des racines d'un polynôme de degré 2

par SoS-Math(30) » ven. 12 oct. 2018 20:00

Bonsoir Yann,

C'est bien cela. Tu obtiens la conjecture : x1+x2=ba

SoSMath

Re: DM sur le produit des racines d'un polynôme de degré 2

par yann » ven. 12 oct. 2018 18:26

-
oui, je trouve x1+x2=32a=2,b=3ba=32

je constate que j'ai le même résultat

Ainsi :

x1+x2=32 <=> x1+x2=ba


-

Re: DM sur le produit des racines d'un polynôme de degré 2

par SoS-Math(34) » ven. 12 oct. 2018 17:50

Bonjour Yann,

Précise d'abord la valeur de x1 + x2 et calcule ensuite -b/a en effet.
Tu constates que tu as le même résultat donc tu peux émettre une conjecture.
La suite de l'exercice concerne la démonstration pour la somme et le produit.

Bonne suite de recherche
Sosmaths

Re: DM sur le produit des racines d'un polynôme de degré 2

par yann » ven. 12 oct. 2018 17:44

Bonjour Sos math (34 )

Je vous remercie pour l'aide , pour la vidéo , très pédagogique !!!

L'aide disponible sur votre site a été le seul moyen pour moi de rendre mon DM, merci à sos math( 33) à sos math (31) à sos math (9) pour l'aide.




pour la 2 ) Calculer la somme et le produit des racines. Que remarquez vous ? On pourra comparer ces valeurs aux coefficients de f1(x) et f2(x)
et ainsi qu'étudier les possibles liens avec le système {u+v=Su×v=P


j'ai mis : les coefficients de 2x23x+1 c'est à dire les coefficients b=3 et a=1 ne permettent pas d'avoir la somme

et la somme s'obtient en faisant : ba

a=2,b=3 alors ba=ba=(3)2=32


j'espère que c'est bon
-

Re: DM sur le produit des racines d'un polynôme de degré 2

par SoS-Math(34) » mer. 10 oct. 2018 21:50

En complément la vidéo suivante peut t'aider (pour vérifier les calculs de la suite de l'exercice)
https://www.youtube.com/watch?v=_dh-VBbBIiQ

Re: DM sur le produit des racines d'un polynôme de degré 2

par SoS-Math(34) » mer. 10 oct. 2018 21:48

a n'est pas égal à 1...
calcul x1 + x2 somme des racines.tu pourras conjecturer une formule qui donne x1+x2 avec certains des coefficients a,b,c
calcule x1*x2 produit des racines. tu pourras conjecturer une formule qui donne x1*x2 avec certains des coefficients a,b,c
Pour le reste, plusieurs pistes ont déjà été données dans les post précédents.
je t'invite à les relire attentivement.

bonne recherche
sosmaths

Re: DM sur le produit des racines d'un polynôme de degré 2

par yann » mer. 10 oct. 2018 18:01

-

pour la 2 ) Calculer la somme et le produit des racines. Que remarquez-vous ? On pourra comparer ces valeurs aux coefficients de f1(x) et f2(x) des polynômes ainsi qu'étudier les possibles liens avec le système |u+v=Su×v=P|

pour le premier cas 2x23x+1

a = 1
b = -3
c = 1

pour trouver 32 avec les lettres a,b et c et bien j'ai dit qu'il faut prendre b

mais là, encore je sais pas trop ce que le professeur attend comme réponse

-

Re: DM sur le produit des racines d'un polynôme de degré 2

par SoS-Math(34) » mer. 10 oct. 2018 17:34

si tu veux rédiger ainsi, cela fonctionne.

bonne continuation.

Re: DM sur le produit des racines d'un polynôme de degré 2

par yann » mer. 10 oct. 2018 17:23

-

oui, je sais , je peux faire plus simple en mettant x partout

là, en fait j'essaie de prendre des automatismes, comme j'ai un peu le temps aujourd'hui

étape 1 : je remarque que f1(x)=2×f2(x)

2x23x+1=2(x232x+12)

Donc f1(x)=2×f2(x)

étape 2 :

x1,x2 sont bien les racines de f1(x)


étape 3 :


donc 2×(x2132x1+12)=0 <=> (x2132x1+12)=0<=>f1(x1)=0 et j'en déduis que x1 est également racine de f2(x)


-

Re: DM sur le produit des racines d'un polynôme de degré 2

par SoS-Math(34) » mer. 10 oct. 2018 16:50

Quelques détails :

2*f2(x1) = 0 dans l'équivalence de l'étape 2.
il manque l'indice 1 à un endroit dans l'étape 3, x1 et pas x.

Tu as compris sinon, mais tu pouvais faire plus simple, comme indiqué à quelques reprises précédemment, notamment en mettant des x partout à la place de x1, ce qui indique que tes équations sont équivalentes et donc ont les mêmes racines (solutions)

Re: DM sur le produit des racines d'un polynôme de degré 2

par yann » mer. 10 oct. 2018 16:42

-

étape 1

x1,x2 sont les racines de f1(x)=2x23x+1


étape 2

f1(x)=2×f2(x)

ainsi 2×f2(x1)<=>2×(x2132x1+12)=0

étape 3

je rédige la phrase avec les équivalences

2×(x2132x+12)=0 <=> x2132x1+12=0 <=> f2(x1)=0

donc x1 est bien racine de f2(x)


pareil avec x2

-

Re: DM sur le produit des racines d'un polynôme de degré 2

par SoS-Math(33) » mer. 10 oct. 2018 16:16

Oui,
étape 1 tu résous f1(x)=0
étape 2 tu remarques que f1(x)=2f2(x)
étape 3 tu rédiges la phrase avec les équivalences
étape 4 tu conclus.

Re: DM sur le produit des racines d'un polynôme de degré 2

par yann » mer. 10 oct. 2018 16:11

-

je sais que j'insiste beaucoup mais dans les démonstrations, je m'y perds à chaque fois

en fait je suis ce plan

étape 1 :
la fonction f1(x)=2x23x+1=0

étape 2 :
je dis que f1(x) c'est aussi 2×f2(x)

étape 3 :

je reconnais f2(x)=x232x+12 dans le développement enfin je ne sais pas si je peux employer ce terme : " je reconnais dans le développement "


et j'en déduis etc....

-

Re: DM sur le produit des racines d'un polynôme de degré 2

par SoS-Math(33) » mer. 10 oct. 2018 16:02

Oui ça montre la proportionnalité des deux fonctions et ainsi qu'elles ont les mêmes racines.

Re: DM sur le produit des racines d'un polynôme de degré 2

par yann » mer. 10 oct. 2018 15:57

-

f1(x)=0......... f2(x)=0


tout ce qu'il y a entre les , c'est ce qui sert à démontrer la proportionnalité des deux fonctions, enfin c'est ce dont parler sos math (21) un peu plus haut


-

Haut