par Alice » lun. 18 déc. 2017 19:44
D est le symétrique de A par rapport à G, alors G est le milieu de [AD].
[C'C] est la médiane du triangle ABC issue de C coupant [AB] en C', alors C' est le milieu de [AB]
Dans un triangle, si une droite passe par les milieux de deux côtés opposés, alors elle est parallèle au 3ème côté.
Donc (GC) est parallèle à (BD).
[AA'] est la médiane du triangle ABC issue de A en coupant [AC] en A', alors A' est le milieu de [BC]
Dans un triangle, si une droite passe par les milieux de deux côtés opposés, alors elle est parallèle au 3ème côté.
Donc (BG) est parallèle (DC).
Donc si (GC)//(BD) et (BG)//(DC) alors BGCD est un parallélogramme.
D est le symétrique de A par rapport à G, alors G est le milieu de [AD].
[C'C] est la médiane du triangle ABC issue de C coupant [AB] en C', alors C' est le milieu de [AB]
Dans un triangle, si une droite passe par les milieux de deux côtés opposés, alors elle est parallèle au 3ème côté.
Donc (GC) est parallèle à (BD).
[AA'] est la médiane du triangle ABC issue de A en coupant [AC] en A', alors A' est le milieu de [BC]
Dans un triangle, si une droite passe par les milieux de deux côtés opposés, alors elle est parallèle au 3ème côté.
Donc (BG) est parallèle (DC).
Donc si (GC)//(BD) et (BG)//(DC) alors BGCD est un parallélogramme.