par eleve86 » sam. 28 janv. 2012 08:23
bonjour,
J'ai une fonction définie sur R/{3} : f(x)=ax+b+(1/(3-x))
Et il faut que je détermine a et b sachant que la courbe représentative de f dans un repère orthonormé passe par le point A (2 ; 1) et a une tangente parallèle a l'axe des abscisses au point A.
Seulement je n'y arrive pas. J'ai essayé de mettre au même dénominateur. Je sais aussi que y=2 et je connais y=f'(a)(x-a)-f(a).
Pourriez vous m'aider?
Merci d'avance.
bonjour,
J'ai une fonction définie sur R/{3} : f(x)=ax+b+(1/(3-x))
Et il faut que je détermine a et b sachant que la courbe représentative de f dans un repère orthonormé passe par le point A (2 ; 1) et a une tangente parallèle a l'axe des abscisses au point A.
Seulement je n'y arrive pas. J'ai essayé de mettre au même dénominateur. Je sais aussi que y=2 et je connais y=f'(a)(x-a)-f(a).
Pourriez vous m'aider?
Merci d'avance.