congruence DM

Répondre


Veuillez faire glisser les différentes réponses possibles dans la liste appropriée. Ceci est une mesure permettant de lutter contre les inscriptions automatisées.
Propositions de réponse
  • Vert
  • Rouge
  • Bleu
  • Noir
Réponse

Aide syntaxe LaTeX
Les BBCodes sont activés
[img] est désactivé
[flash] est désactivé
[url] est activé
Les smileys sont désactivés

Revue du sujet
   

Étendre la vue Revue du sujet : congruence DM

Re: congruence DM

par sos-math(21) » lun. 9 janv. 2023 15:36

Bonjour,
j'ai publié le message qui propose une autre méthode (plus directe) pour prouver la congruence modulo 6.
Merci pour la contribution et bonne continuation

Re: congruence DM

par Thomas » dim. 8 janv. 2023 13:44

Bonjour
On peut le faire directement
Si p congru à 1 modulo 3 alors il existe k entier tel que p=1+3k
Comme p est premier k est pair =2k'
Donc p=1+3*2k'= 1+6k' avc k' entier pair ou impair.
Alors p est congru 1 modulo 6.

Re: congruence DM

par sos-math(21) » dim. 8 janv. 2023 13:04

Bonjour,
tu avais dit dans ton premier message que tu avais réussi à prouver que p était congru à 1 ou à 1 modulo 6.
Je me suis donc basé sur ce que tu avais obtenu et j'ai essayé d'éliminer la congruence à 1. Par l'absurde, j'ai supposé que p1[6] ce qui est équivalent à p5[6].
On avait obtenu que cette hypothèse menait à une contradiction donc il reste comme seule congruence p1[6], ce qu'il fallait démontrer.
Es-tu d'accord avec moi ?
Bonne continuation

Re: congruence DM

par Louis » dim. 8 janv. 2023 12:47

Bonjour j'ai pas compris pourquoi on suppose p=5[6]? et non 2,3 4

Re: congruence DM

par sos-math(21) » sam. 7 janv. 2023 21:43

Bonjour,
tu peux faire un raisonnement par l'absurde en supposant que p5[6] (c'est comme congru à - 1).
Cela signifie qu'il existe un entier k, tel que p=6k+5=3(2k+1)+2, ce qui prouve que p2[3] et qui contredit l'hypothèse faite sur p.
Donc on ne peut pas avoir p5[6], donc il reste p1[6]
Bonne continuation

congruence DM

par Louis » sam. 7 janv. 2023 18:37

Bonsoir, je dois montrer qui si un nombre premier est congru a 1 modulo 3 alors il est aussi congru a 1 modulo 6.
J'ai déjà montré qu'un nombre premier peut seulement être congru à 1 ou -1 modulo 6.
Cordialement

Haut