Équation du second degré

Répondre


Veuillez faire glisser les différentes réponses possibles dans la liste appropriée. Ceci est une mesure permettant de lutter contre les inscriptions automatisées.
Propositions de réponse
  • 7
  • 8
  • 5
  • 25
Réponse

Aide syntaxe LaTeX
Les BBCodes sont activés
[img] est désactivé
[flash] est désactivé
[url] est activé
Les smileys sont désactivés

Revue du sujet
   

Étendre la vue Revue du sujet : Équation du second degré

Re: Équation du second degré

par Ibrahim » dim. 9 oct. 2022 12:49

∆=8 ainsi
X1=-5-5√2 et X2=-5+5√2
√x=-5-5√2=x=75+50√2 et x=-5+5√2=75-50√2

============SosMath(25) :================

Attention ! Si x est un nombre réel, x0.

On ne retiendra donc que la solution positive en X :

X=x=5+22

Ainsi, x=

Bonne continuation

Re: Équation du second degré

par Ibrahim » dim. 9 oct. 2022 12:34

Oui vous avez raison ∆=8 ainsi X1=-15 etX2=5
D'où √x=-15 et √x=5
SR=25. Es ce que c'est ça

Re: Équation du second degré

par SoS-Math(25) » dim. 9 oct. 2022 10:59

Bonjour Ibrahim,

Le discriminant ne serait-il pas 8 au lieu de 6 ?

Ensuite, il faut résoudre l'équation en x en utilisant X=x ou encore, avec x0, X2=x.

Bon courage

Re: Équation du second degré

par Ibrahim » dim. 9 oct. 2022 10:04

Bonjour
Pour la question b) en injectant les deux equalité j'ai 1/5X²+2X-5=0 et ∆=6
X1=-(10+5√6)/2 et X2=-10+5√6/2

Re: Équation du second degré

par SoS-Math(25) » sam. 8 oct. 2022 10:27

Bonjour Ibrahim,

Comme dit mon collègue, il y a un manque de clarté dans ton message. Dois-tu résoudre :

b) Une équation ? 15x+2x5=0 ?

Dans ce cas, je te propose la même méthode que mon collègue :

On pose X=x. Ainsi, X2=x. En injectant ces deux égalités dans l'équation, tu obtiendras une équation du second degré en X à résoudre avec Δ. Il faudra ensuite revenir à x.

c) Une inéquation ? x2+3+6x2>0 ?

Dans ce cas, si xR, x20. Mais ici, x0. Donc x2>0.

Puis on peut résoudre cette inéquation. Tu as raison, l'ensemble des solutions est bien R.

D'ailleurs, cela peut aussi répondre à la question a) : Résoudre l'équation x2+3+6x2=0

Bon courage

Re: Équation du second degré

par Ibrahim » sam. 8 oct. 2022 09:55

Pour le b) c'était 1/5x+2√x-5=0 c'est ça qu'il fallait résoudre.

Re: Équation du second degré

par Ibrahim » sam. 8 oct. 2022 09:53

En utilisant le delta j'ai eu -21 donc l'inéquation dépend du signe de on aura S=R
Es ce que c'est ça ?

Re: Équation du second degré

par SoS-Math(33) » sam. 8 oct. 2022 07:10

Bonjour,
ce que tu nous donne n'est pas des équations pour le a) et le b).
Tu as du voir en cours l'utilisation du changement de variable.
Pour le c)
Au préalable l'inéquation existe pour x0
x2+3+6x2>0
On pose X=x2 donc X0 et X>0
On obtient
X+3+6X>0 et en mettant au même dénominateur
X2+3X+6X>0
Comme on a X>0 le quotient est positif pour un numérateur positif ainsi on obtient
X2+3X+6>0
Est-ce plus clair?
Je te laisse poursuivre la résolution
SoS-math

Équation du second degré

par Ibrahim » ven. 7 oct. 2022 21:14

Bonsoir j'ai un exercice que je ne comprends pas.
Résous dans R les équations suivante
a) x²+√3+6/x²
b)1/5x+2√x-5
C)x²+√3+6/x²>0

Haut