Défimath, nombres de Lynch-Bell, urgent!

Répondre


Aide syntaxe LaTeX
Les BBCodes sont activés
[img] est désactivé
[flash] est désactivé
[url] est activé
Les smileys sont désactivés

Revue du sujet
   

Si vous souhaitez joindre un ou plusieurs fichiers, complétez les indications suivantes.

Étendre la vue Revue du sujet : Défimath, nombres de Lynch-Bell, urgent!

Re: Défimath, nombres de Lynch-Bell, urgent!

par sos-math(13) » dim. 12 oct. 2014 21:13

N'hésite pas à poser de nouvelles questions si tu avances dans ta réflexion.

Re: Défimath, nombres de Lynch-Bell, urgent!

par Julien » dim. 12 oct. 2014 21:01

D'accord merci pour votre aide.

Re: Défimath, nombres de Lynch-Bell, urgent!

par sos-math(13) » dim. 12 oct. 2014 20:44

Mais pourquoi voudrais-tu les enlever ?
Parce que tu ne les vois pas dans la "solution" ?

Si tu veux raisonner correctement, il faut oublier que tu as cette solution.

Pour l'instant, en effet, rien ne permet de les retirer.

Re: Défimath, nombres de Lynch-Bell, urgent!

par Julien » dim. 12 oct. 2014 20:41

merci beaucoup mais je n'arrive pas à enlever le chiffre 4 puis le chiffre 5, pour n'avoir que 7 chiffres dans le nombre.

Re: Défimath, nombres de Lynch-Bell, urgent!

par sos-math(13) » dim. 12 oct. 2014 20:23

Attention : tu peux supprimer 0, mais la raison n'est pas la bonne.

C'est le nombre (en entier) qui doit être divisible par chacun de ses chiffres.
Or un nombre, quel qu'il soit, n'est jamais divisible par 0. Donc on ne peut pas mettre "0" dans un nombre de Lynch-Bell.

Bon courage pour la suite.

Re: Défimath, nombres de Lynch-Bell, urgent!

par Julien » dim. 12 oct. 2014 20:14

je sais que je peux déjà supprimer 0, car il ne se divise pas par lui même. il reste alors 1,2,3,4,5,6,7,8 et 9. Je dois donc essayer de voir si les autres sont divisibles par eux-mêmes?

Re: Défimath, nombres de Lynch-Bell, urgent!

par sos-math(13) » dim. 12 oct. 2014 20:07

A bientôt sur sos-math.

Re: Défimath, nombres de Lynch-Bell, urgent!

par Julien » dim. 12 oct. 2014 20:06

d'accord, merci.

Re: Défimath, nombres de Lynch-Bell, urgent!

par sos-math(13) » dim. 12 oct. 2014 19:59

A priori 10 chiffres... 0 1 2 3 4 5 6 7 8 9.

Après c'est à toi de montrer qu'il y en a moins. Oublie la "solution" que tu as vu et réfléchi par tes propres moyens, c'est la plus sûre méthode.

Re: Défimath, nombres de Lynch-Bell, urgent!

par Julien » dim. 12 oct. 2014 19:55

7 chiffres pourraient contenir ce nombre comme dans ''9867312" qui est la réponse, non?

Re: Défimath, nombres de Lynch-Bell, urgent!

par sos-math(13) » dim. 12 oct. 2014 19:35

Bonjour,

c'est évidemment très long comme méthode.
Tu peux déjà te demander combien de chiffres pourrait contenir ce nombre.

Bon courage.

Défimath, nombres de Lynch-Bell, urgent!

par Julien » dim. 12 oct. 2014 19:07

bonsoir, j'ai un dm de maths où je dois trouver le plus grand nombre de Lynch-Bell. Voici l'énoncé:
<< On appelle nombre de Lynch-Bell, tout entier positif, dont les chiffres sont deux à deux différents, et qui est divisible par tout nombre s'écrivant à l'aide d'un seul de ses propres chiffres. Quel est le nombre de Lynch-Bell? >>

J'ai pu trouver le nombre, qui est 9867312 en cherchant sur internet mais sachant que je ne l'ai pas trouvé seul, ça ne m'apporte rien. Je me demandais alors si je devais diviser chaque nombres existants, allant de 1 jusqu'à 9867312. Mais les calculs comme ''1/1=1, 2/2=1, 3/3=1... me prendraient trop de places et de temps, je voudrais donc savoir s'il existait une formule pour résoudre mon problème. J'ai commencé les calculs en faisant seulement:
1/1=1
2/2=1
3/3=1
4/4=1
5/5=1
6/6=1
7/7=1
8/8=1
9/9=1
10/0= on ne peut pas diviser par 0
11/1=11
12/2=6
13/3=4.3
14/4=3.5
pour l'instant, il n'y a que 1,2,3,4,5,6,7,8,9 et 12 qui font partis des nombres de Lynch-Bell mais ça ne m'aide pas à trouver le plus grand nombre de manière détaillée.
Merci de votre aide.

Haut